凯发文学网 > 工具论 > 第 13 部分阅读

第 13 部分阅读

当属于b的全体和的全体。并且不述说其他事物时,b也๣属于所有时,和b必定是可换位的。因为只述说于b和,b既述说它自身又述说,那么很显然,b也述说所述说的切主ว项ำ,除了自身而外。

但是,如果结论是在相矛盾的意义上被转换,则两个前提都可被反驳。因为ฦ如果不属于任何b,b属于所有,则不属于任何。再者,如果不属于任何b,但属于所有,则b不属于任何。如果另个前提不是全称的,则同样的道理也适用。因为如果不属于任何b,b属于某个,则ท不属于某个。如果不属于任何b,但属于所有,则ทb不属于任何。

工具论之前分析篇第二卷

在我们后面讨论归谬法时,这些论点会变得更加清楚。现在,让我们设定这些都已经很清楚。无论是要求直接证明个结论还是用归谬法去证明个结论,我们都必须ี注意相同的词项。但是,在其他假设性的三段论中,例如,涉及到替换或性质联系时,研究所涉แ及的不是原来设定的词项而是被替换的词项,而研究的方法则与以前๩相同。但是,我们必须ี考虑和分析假设性三段论的不同类型。

如果设定否定前๩提是特称实然的,那么,不论另个前๩提是肯定的还是否定的,三段论都不能ม产生。如果设定两个ฐ前提都是不定的,那么เ无຀论它们是肯定的还是否定的,三段论都不能成立。如果设定两个前提都是特称的,情况也同样。证明的方式是同样的,并可以适用相同的具体词项。

在特称三段论中,如果全称前提是必然的,结论也会是必然的;但是,如果特称前๩提是必然的,那ว么不管全称前提是肯定的还是否定的,结论都不是必然的。让我们首先设定,全称前提是必然的,必然属于所有b,b仅能属于某个。由此可得的结论定是:必然属于某个。因为是归属于bຘ的。而根据设定,必然属于所有bຘ。如果三段论是否定的,情况亦同样,因为证明是相同的。但如果特称前提是必然的,结论却不会是必然的。否定这点并不会产生什么不可能的结果,正如在全称三段论中ณ不会产生不可能的结果样。否定前提的情况亦相同,可作例证的词项ำ是:运动动物白色的。

如若判断的情况就是这样,而且口头的肯定和否定乃ี是内心判断的符号,很清楚,当全称否定和肯定陈述拥有同主项时,全称否定也就是肯定陈述的真正的相反命题๤,例如,“所有好的东西是好的”或“所有人是好的”的相反命题是“并非所有好的东西是好的“或“并非所有人是好的”,而“并非所有好的东西是好的”或“并非所有人是好的”乃是与它们相对的矛盾命题。很显然,无຀论是个真实的判ศ断还是个真实的矛盾命题,都不可能与个ฐ真实的判断相反。因为,当两个命题都真实时,个人可以同时坚持这两者而没有什么不致,而相反命题๤则是陈述相反事实的命题,而相反事实不可能同时存在于同主体。

【7】有些事物是全称的,有些事物是单称的,我的意思是说,全称可以被表述为多数主ว体,如“人”,单称则不能这样,如“加里亚斯ั”。

在这个图式中处于对角位置的命题๤,不可能ม像第种情况那ว样,两者都是真实的,虽然有时情况也会这样。

显然,“具有”与“缺乏็”之ใ间的对立,和有相互关系的两事物之间的对立不同,因为这两者无论哪个都不能借助于它的对立面来说明,视力不是盲的视力,而且也๣不能在其他方面说它们两者相互关联,我们也不能ม把盲说成是视力的盲,盲是视力的缺乏,并不是视力的盲。而且,所有的关系都有相关者,所以,如若盲属于关系范畴,那么它和与它相关的事物之间便有相互关系,但是它却并没有与它相关的东西,因为视力不是盲的视力。

无论是否把它们确定为ฦ数量,它们都没有相反者。因为要知道,它们并不是在自身意义上说的,而是相对于某种外在的东西来说的,所以,它们怎么可能有相反者呢?如若“大”和“小”是相反者,那ว么,同主体就会在同时间具有相反的性质,这些事物就会同它们自身相反。有时会产生同事物既ຂ是大又是小。因为和事物相比较它是小的,而和另事物相比较它又是大的,所以,同事物在同时间里既是大又是小,因此它在同时就具有相反的性质。但有些事物似乎不可能同时具有相反者,如实体。虽然实体能接受相反的性质,但个人不可能同时既有疾病又很健康,事物也๣不可能同时既ຂ是白的又是黑的。其他事物也都不可能同时具有相反的性质。如若“大”和“小”是相反的,那ว么它们应当对自身就是相反的,同事物在同时就应当既是大又是小,这样它对自身就成为相反的了,但这是不可能的,它不可能对自身是相反的。所以,大和小多和少并不相反。虽然有人并不把它们叫做关系,而是称为数量,但它们并没有相反者。

这样个传奇故事,说来虽也凄婉动听,但总难免启人疑窦。因为,吕克昂在当时已是古代西方文明世界国际性的学术机构,自亚里士多德后已๐存续了250่余年,很难想象在各地的学院里连创建者的份手稿也无຀保存,更难想象漫步派的门徒们让其开山祖的典籍受到เ如此恶劣的对待。不过无຀论如何,我们现在所见到的亚里士多德著作的形式次序和每篇的标题,都应归功于安德罗尼河,这已๐是人所公认的了。更令人遗憾的是,安德罗尼河所编定的全集后来也失散了,甚至连份目录也๣不曾保存下来。至少也可以断言,第欧根尼·拉尔修没能ม够见到这份目录,若不然我们就会从保存下来的第氏目录中,更多见到我们今日຅所见的亚里士多德著作的标题。特别ี是那ว些主要著作的标题,如物理学形而上学等等。实际上,公元后的几个ฐ世纪里,罗马帝ຓ国战乱ກ频仍社会腐败,希๶腊哲学的智慧火花已๐濒于熄灭。学者们纷纷带着他们的典籍移居较安定的东方แ,继续自己的事业。于是新兴的基督教就来填补这精神空位。基督教是个ฐ以信仰为基础的排他性很强的宗教,它和把求知看作是人的本性的希腊ຘ哲学针锋相对。特别在公元4世纪基督教被宣布为ฦ罗马帝国国教,对世俗的希腊ຘ哲学加强限制,终于在公元52๐9年查士丁尼下令封闭了全部非基督教的学校,希๶腊哲学在西方แ失去了最后的存身之所,亚里士多德的著作几乎ๆ不再为ฦ人所知。除了在公元6世纪初,罗马的位学者和政治家波埃修b把范畴๨篇解释篇等几个短篇译为ฦ拉丁语之外,直到12世纪初6๔00年间,就没有迹象表明,拉丁语世界还接触过其他亚里士多德著作。

因为在每个种里,只有依据自身所属的那ว个特殊种的属性才必然地属于它,所以,很显然,科学证明关于依据自身的属性并且以它们为始点。偶然属性不是必然的,所以我们并不必然知道为什么结论是真实的,即使属性总是属于主体,而不是依据自身而属于,那也不行,如在凭借标示的证明中那样。因为我们不知道作为ฦ依据自身的事实是依据自身的,也๣不知道它的为什么。知道件事物的为什么เ是通过它的原因而知道的,因而,中词必定由于自身属于小词,大词必定由于自身属于中词。

【7】从个ฐ种跨到另个ฐ种不可能ม证明个事实,例如通过算术证明几何命题๤。证明有三个因素า:1有待于证明的结论它是就自身而归属于某个ฐ种的属性;2公理公理是证明的基础;3๑载体性的种及其规定及依据自身的属性由证明揭示。如果种互不相同,如算术和几何,即使证明的基础是同的,算术的证明也不可能ม适用于量值的属性,除非量值是数目。在某些情况下转变是可能的。其原因将在下文解释。算术证明总是拥有作为证明对象的种,其他科学亦相同。这样,如果证明是可转换的,种必定是同的,要么เ是纯粹的,要么是在某些方面同。在其他方式上,这显然是不可能的。端词和中词必定属于同个种:如果联系不是出于自身的,那ว它必定是偶然的。这就是我们不能通过几何学证明相反者为ฦ同学科所研究,甚至不能证明两个立方体之积是个ฐ立方体的原因。门科学的命题不能由另门科学来证明,除非存在着这样种联系,即门科学的命题๤从属于另门科学的命题。例如,光学的命题๤从属于几何学,和声的命题从属于算术。几何学也不能决定是否个ฐ不是作为线的给定的属性属于线,并且从它们自己特殊的原则中引申出来,例如,直线是否是所有线中最美的,它是否是曲线的对立面,这些属性适用于线不是由于它们特殊的种,而是由于它们是为其他某个种所共有的性质。

【8】显然,如果三段论的前๩提是普遍的,那么,这类证明总体意义上的证明——的结论必定是永恒的。如果联系不是永恒的,那就没有总体意义上的证明或知识。而只是在偶然的意义上而言,即属性不是普遍地而是在特定的时间和条件下属于主体。要是如此,小前๩提必定是非永恒的非普遍的。它是非永恒的,因为ฦ这样结论只能是非永恒的;它是非普遍的,因为结论只是在某些情况下真实,某些情况下不真实,所以不可能ม被证明是真正普遍真实的,而只是在特定的时间中才是真实的。定义แ的情况亦相同。因为定义要么是证明的本原,要么是个ฐ不同形式的证明,要么是证明的结论。显然,关于间断ษ性发生事物的证明和知识,例如月蚀,仅就它们涉及特殊种类的事物而言,它们是永恒的,但就它们不是永恒的而言,它们是特殊的。属性可以间断性地归于其他主ว体,正如蚀之于月样。

【9】除了从与其种相适合的本原出发外,显然不可能ม证明这种特殊属性对它主ว体的归属,所以,知识并不在于从真实的不证自明的真接的原则出发的证明,我这样说是因为ฦ个人不可能ม以这种方式引导个证明。例如,就像布๧拉松证明他的把圆形作成正方形的理论样,这样的论证通过使用个共同的中词而证明结论。这个中词同样涉แ及个不同的主ว体,因而它们也归属于不同种的主体。这样,它们就使我们知道属性不是作为它自身,而只是偶然地属于它的主体,否则ท,证明不可能ม也适用于另个ฐ种。

只有当我们在由于其属性才成为个ฐ属性的主体上,从适合于那个主体本身的本原出发认识个给定的属性时,我们对它的知识才不是偶然的。例如,只有当我们把“内角之ใ和等于两直角”这属性认作是属于它由自身而归属的那ว个主体,并且从适合于这主ว体的本原来认识时,我们对它的知识才不是偶然的。所以,如果这后个ฐ词项由自身属于它自身的主ว体,那么中词必定属于与端词相同的种。为算术所证明的和谐的命题๤是仅有的例外。这种命题๤是由同样的方แ式证明的,但却具有着差异。当被证明的事实属于门不同的学科因为ฦ作为载体的种是不同的时,事实的根据属于更高的科学,属于那个属性出于自身所归属的事物。从上述可以很明显地看到,对任何属性作无条件的证明是不可能的,除非从它自己的本原出发。不过,在刚才所给的例证中ณ,本原有着共同的元素。

如果这点清楚了,那么每个ฐ种的特有本原不能被证明也就清楚了,因为它们由á此获得证明本原是切存在着的事物的本原。关于这些本原的科学高于切。如果个人从更根本的原因中ณ知道个ฐ事实,那他就更真实地知道它,因为当他从它们自身无原因的原因中知道它时,他是从更先在的前提认识了它。这样,如果他在更真实或最真实的意义上知道,那ว么他的知识就是更真实或最真实的。不过,证明不能应用于不同的种,除了我们已๐经解释过的几何学的证明应用于力学或光学的命题๤,算术的证明应用于和声的命题以外。

要确定个人知道还是不知道是很困难的,因为很难确定我们知识是否奠基于适用于每个种的本原,这些本原构成了真正的知识。我们觉得,如果我们从真实的和首要的前提推出结论,那就获得了科学知识,其实不然,推断必须与科学的原初真理相同类。

【10】我把在每个种中ณ不能被证明的事实叫做“本原”,这样,原初真理及由此而证明的属性的意义便被断定了:本原方面的存在必须被断ษ定,属性方面的存在必须被证明。例如,我们断ษ定了“单位”“直”“三角形”的意义,但当我们断定单位及几何量值的存在时,其他东西的存在则必须被证明。

在证明科学所使用的本原中,有些是为特殊科学所特有的,有些则是共有的,但只是在类推的意义上共有。因为每个只就它被包含在与科学相关的种中而言才能被使用。特有的原则ท,如线或直具有如此这般的性质。共有的原则ท,如当相等部分从相等物中取走时,剩余者仍相等,只有当它们在同个种中被断ษ定时才是合适的。如若几何学家不断定普遍的真理而只断定量值的真理,如若算术家只断定数的真理,那么结果相同。它断定其存在并且研究其出于自身属性的那些主体也๣殊于各门科学,正如算术研究单位,几何研究点和线样。这些主体的存在和意义皆被断定,但它们的出于自身的属性只有在意义上才被断定。例如,算术断ษ定奇偶平方立方แ的意义,几何学肯定不可通约倾斜ฒ或接近的意义แ,但它们的存在为共同的本原以及已经证明的结论所证明。天文学的情况亦相同。

切证明科学都涉及三个因素:它提出的主ว体即它研究其本质属性的种;作为证明的根本基础的所谓的共同公理;第三是它肯定其各种含义的属性。不过,也没有什么เ阻止有些科学可以不管其中之ใ。例如,如果种的存在是明显的,就可以略而不论它的存在因为数的存在不像热和冷那ว样明显。或者,如果属性的意义十分清楚,就可以略而不论。正如就共同本原而言,“相等的部ຖ分从相等物中减去,剩ທ余部分仍相等”的意义不用断定样,因为ฦ它众所周知。尽管如此,主ว体对象证明的基础这自然的三重划分是有效的。

自身必然真实并且必定被认为ฦ是如此的东西不是假设也不是预定。因为ฦ证明像三段论样,所涉及的不是外在的而是内在的逻各斯。反对外在的逻各斯总是可能的,但要反对内在的逻各斯却不总是可能的。个教师断定个命题๤可证明却没有证明它,如果学生接受了它,那它就是个假设不是般的,而仅是相对于学生而言的假设。如果学生对它没有观念或只具有相反的观念,那ว么这所作的断定即是预定,这就是假设和预定之间的区别。后者与学生的观念相反,或者是被断ษ定是可证明的,但未经证明而使用。

定义不是假设因为ฦ它们对存在和不存在都不作断定,假设在命题๤中有地位,定义则ท只需要被理解。它不是假设,除非倾听被认为是类假设。假设是由这样的断定所组成的:由于它们的存在,结论便从此而推得。因而,几何学家的假设并不像有些人所坚持认为的那样是虚假的。他们说人们不应使用虚假的东西,几何学家在他所划的线没有尺长时却断定它为ฦ尺长,不直时断定为直,所以是犯了错误。几何学家并没有从他自己้所提到的那条特殊线的存在中推断出什么เ,他只是从通过图示而阐明的事实中ณ推出自己的结论。进步,切预定和假设要么是普遍的,要么เ是特殊的,而定义则既不是普遍的也不是特殊的。

【11】为了使证明可能,并不必然需要形式或与“多”相分离的“”的存在,但陈述个众多主ว体的谓项ำ应当正确却是必然的,否则就会没有普遍的词项ำ。如果没有普遍词项,那ว就没有中词,也就没有证明。所以在众多特殊的事物之ใ上,必定存在着个ฐ自身等同的事物,但却不与它们分有同名字。

没有个证明使用肯定和否定同时都不可的原则,除非它所要证明的结论也是这种形式。大词肯定中词是真实的,否定中词是不真实的,证明为这样的断ษ定所影响,把对矛盾面的否定加到中ณ词上或者加到小词上并没有什么区别。如果我们断定,称谓“人”是真实的东西,称谓“动物”也是真实的——只要“人是动物”是真实的,“人不是动物”是不真实的。那么,即使用“非人”来称谓“动物”也同样是真实的——那么,把“加里亚斯”叫做动物是真实的,即使把“非加里亚斯”叫做动物也是真实的,但把它叫做“非动物”就不真实了。原因在于大词不仅述说中词而且也๣述说另个词项或别的词项ำ,因为它具有广泛的含义。所以,即使中词既是它自身也是它的矛盾面,结论仍不受影响。

“每个谓项的肯定或否定必有真”这法则ท通过归谬法被使用在证明中。它并不总是具有普遍性,而仅是充分的,即与种相关。所谓“与种相关”,我的意思是,与作为所讨论的证明主体的种相关,如我们在上面所论述的那样。

所有的科学互相间都使用共同原则我所谓“共同原则”是指他们用来进行证明的东西,不是他们在对它导出证明的主体,也不是他们证明的联系,辩证法分有切其他科学的原则ท,试图普遍地证明共同原则的科学亦相同,例如,每个ฐ谓项ำ的肯定或否定必有真,把相等部分从相等物中取走,剩ທ余部分仍相等,等等。但根据这定义,辩证法就没有领域,也๣不涉แ及任何类对象。否则它就不会通过疑问而进展了。疑问是不可能证明的,因为对相反的事实不可能作出同样结果的证明。这已๐在关于三段论的著作中ณ指出过了。

【12】如若个ฐ三段论的问题๤与陈述对立面之方的命题相同,而每门科学都有它自己้三段论所依据的命题,那ว么เ必定存在着科学的问题,它与由此可以推得适合于科学的结论的前提相应。很显然,并不是每个ฐ问题๤都是几何学的或医学的,其他科学亦相同,只有其根据与证明几何定理或任何在其证明中所使用的公理与几何学相同的科学定理如光学相应的问题๤才是,其他科学亦相同。几何学家必须根据几何学的本原和结论对这些问题作出解释;但作为个ฐ几何学家,他没有必要对本原作出解释。其他科学的情况亦与此相同。

因而,我们不能向每个专门家问任何问题,专门家也不会回答向他提出的与每个给定的主ว题相关的切东西。他只回答属于他自己的学科范围内的问题。个人作为几何学家跟个ฐ几何学家相辩论,如果他通过从几何学本原中所证明的论点来辩论,那么他显然是适当的,否则ท就是不适当的。如果他的辩论不恰当,那ว他显然就不能驳倒个几何学家,除非出于偶然。所以,不应该在群不懂ฦ几何学的人中讨论几何学,因为ฦ他们觉察不出不可靠的论证。这种情况也适用于其他切科学。

几何问题存在着,那么非几何问题也๣存在吗?在任何科学例如几何学中,是种什么เ样的无知仍然提出几何学的问题呢?从虚假的前提中推出的结论,或者虽然虚假却仍是几何学的推论,是无຀知的结论吗?或者它是个从门不同的学科推得的论断吗?例如,音乐问题是与几何学相关的非几何学问题,而设想平行线相交在种意义上是几何学的,但在另种意义上却是非几何学的。“非几何学的”与“非节奏的”样有两种含义。件事物是非几何学的,在种意义上是因为它完全缺乏那种性质,在另种意义上是它拥有这种性质但极其微小。它是在后种意义上的无຀知,即从与科学知识相反的前๩提中ณ推论而得的无知。在数学中,形式的谬误没有这样普遍,因为产生歧义的总是中词,个词项ำ作中词的全体的谓项ำ,中ณ词又依次作另词项的全体谓项,但是谓项并没有说明所有。在数学中ณ,中词可以被智慧之眼清楚地看到,而在辩证的论证中歧义往往容易被忽视。“每个圆都是个形状吗?”如果人们画个ฐ圆,那么答案是很明显的,“叙事诗是圆吗?”显然不是。

如果某证明具有归纳的小前๩提,我们就不应对它提出异议,正如个只适用于种情况的前提不是真实前提样因为它不适合所有情况,而三段论是从普遍判断进展的,这种性质的异议不是真正的异议。前提与异议是相同的,任何被提出来的异议都可以变成个前๩提,要么是证明的,要么是辩证的。

我们发现有些人通过把握两ä个ฐ词项的后件而错误地作论证。例如卡纽斯坚持认为火是以几何级数扩展的,根据是火和这类级数都增长得极迅速。在这种条件下没有三段论。只有当最迅速的增长隐含着几何比例,火在其运动中隐含着最迅速的增长率时才行。有时不可能ม从断定中获得个结论,有时它是可能的,但进展的方法却被忽略了。

如果不可能从虚假的前提证明个真实的结论,那么分析就会十分容易,因为ฦ结论与前๩提必然是交互的。让成为个真正的事实,它的真实性包含着其他些我知道是真的事物例如b的真实性,那么,从后者我就可以证明确实是真实存在的。交互现象在数学中更加普遍,因为数学从不具有偶性这是它不同于辩证推理的另方แ面,它只具有定义。

科学的增长不是由于中词的插入而是由于大小词的附加,例如,是b的谓项ำ,b是的谓项,是的谓项,由此无穷后推。它也可以倾向扩展,例如,既是又是的谓项。举ะ个例子说,是确定的或不确定的数,b是确定的奇数,是特殊的奇数,那么是的谓项ำ。再者,是确定的偶数,是个特殊的偶数,那么是的谓项。

【13】在同门科学中,对事物的知识和对事物原因的知识在下列不同的条件下是不同的:1如果结论不是从直接的前提推得因为这样来,第因近因不包含在它们之中,而对原因的知识是依赖第因的。2虽然结论是从直接前๩提推得,但它却不是从原因而是从两个ฐ可转换的词项中知道得更清楚的那个词项ำ中推得。因为在两个可以转换的谓项中,不是原因的那ว个可能ม知道得更清楚,所以证明将从此而进展。例如,“行星是相近的,因为它们不闪烁”这样个证明。让表示“行星”,b表示“不闪烁”,表示“相近”,那么,bຘ作为的谓项是真实的,因为行星不闪烁,但陈述bຘ同样是真的,因为不闪烁的东西是接近的这已๐经通过归纳或感官知觉而确定,这样,必定属于,从而证明了行星是相近的。因此这个三段论证明的不是原因而是事实。因为不是因为行星不闪烁,所以它们相近,而是因为它们相近,所以不闪烁。不过,借助大词证明中ณ词是可能的,所以证明可以揭示根据。例如,让表示“行星”,bຘ表示“相近”,表示“不闪烁”,那ว么b属于,并且属于b,所以也属于。这个ฐ三段论揭示了根据,因为ฦ第因已被断定了。再如,月亮由于它的盈亏被证明是球形的,如果展现出这类盈亏的事物是球形,月亮展现了这类盈亏,那么เ月亮很显然是球形的。三段论用这种形式证明事实,但当中词与大词互换时,我们就揭示ิ了根据,因为月亮不是由于它的盈亏所以是球体,而是因为它是球体所以呈现出这种盈亏。表示“月亮”,b表示“球形”,表示“盈亏”。3如果中词不能转换,不是原因的东西比原因更被了解,那么事实能被证明而根据却不能被证明。4中词与大词和小词不相交的三段论亦同样情况。在这些三段论中,证明说明了事实却没有说明根据。因为ฦ原因没有得到เ陈述。例如,墙为什么เ不呼吸?因为它不是动物,如果这是不呼吸的原因,“是动物”就应当是呼吸的原因。如果个否定陈述给出个属性所不属于的原因,那么,相应的肯定陈述就会给出其属于的原因。如果我们身体的热和冷的元素า失调是我们不健康的原因,那ว么,它们的适当比例就是我们健康的原因。同样,如果肯定陈述给出了个属性所属于的原因,那么เ否定陈述就会给出它不属于的原因。但在给予的例证中,结论并不跟随,因为ฦ并非切动物都呼吸,证明这类原因的三段论出现在中间格中。例如,让表示“动物”,b表示“呼吸”,表示“墙”,那么,属于所有b因为凡是呼吸者皆为动物但不适用于,这样,b也不属于任何,因而墙不能呼吸。这样的原因就象是牵强附会的解释,我的意思是指用太遥远的种形式去陈述中词,例如,阿那赫里西斯ั的格言,即在斯库塞人中没有吹笛手,因为没有葡萄树。

在同门科学中,根据中词的位置,证明事实的三段论与证明根据的三段论的差异就是这样。但事实和根据还在另方面互不相同,即在每个ฐ为不同科学所研究的存在上。所有互相联系,门从属于另门的学科都是这样。正如光学问题从属于几何,力学问题从属于立体几何,和声问题从属于算术,自然现象研究从属于天文学这样的联系样。在这些学科中有些实际上是同名的,例如,数学和航海天文学都被叫做天文学,数学和声学和谐都被叫做和谐。在这些学科中,收集资料者知道事实。数学家揭示ิ根据,后者能ม证明原因,但他们却常常忽视事实。正如研究普遍的人由于缺少完全的考察常常忽略某些特殊事例样。切分离存在的呈现出特殊形式的对象都属于这类。数学是研究形式的,它们并不把它们的证明局限在特殊的主体上。即使几何学涉及特殊的主体,它们也๣仅仅是偶然的。正如光学与几何学相关样,另门科学即对虹的研究与光学联系。知道虹存在这事实是制然哲学家的任务,认识其根据是光学家或者是纯粹的光学家或者是数学上的光学家的任务。许多并不严å格从属于其他科学的科学也๣具有这种联系,如医学与几何学,医生知道周期性的伤治愈较慢这事实,但几何学家知道该事实的根据。

【14】在所有的格中,最科学的格是第格。不仅数理科学,如算术几何及光学通过它推进它们的证明,而且,广而言之,所有探讨根据的科学实际上都通过这格推进自己的证明。般来说,在绝大多数情况下,探索根据的三段论都受这个格的影响。由于这个缘故,第格也可以被认为是最科学的,因为ฦ知识的最重要的部分就是对根据的研究。进步,仅用这个格也能追求“是什么”的知识。因为在中间格中我们得不到肯定的结论。而对事物的“是什么เ”的知识必定是肯定的。在最后格中ณ我们可以得到肯定的结论,但它不是全称的,而“是什么”却属于全称的范畴。“人是两足动物”并不是在任何特殊意义上而言的。最后,第格独立于其他格,而其他格则为它所补充和增加,直到它们获得直接前提为止,十分显然,第格对于知识来说是最关键的。

【15】正如可以不可分割地属于b样,它也可以不可分割地不属于b。我的意思是,在不可分割地属于与不属于之间没有中词。在这种情况下,属于或不属于就不再依赖其他词项。当或b或两者被包含在某个ฐ整体中时,就不可能在首要的意义上不属于b。让被包含在的整体中,如果b不被包含在的整体中ณ被包含在某个ฐ整体中,而b却不被包含在其中ณ,这是完全可能ม的,那么เ就会有三段论证明不属于b。如果属于的所有部分却不属于b的任何部分,那ว么就不属于b。如果b被包含在某个整体中,譬如说,中ณ,则情况亦相同。因为属于bຘ的所有部分,所以不属于的任何部ຖ分,因而通过三段论表明,不属于b的任何部分。如果两者都被包含在同个ฐ整体中,那么เ证明将会采取同样的形式。

b可以不被包含在包含着的整体中,反之亦同样成立,这点通过系列互相排斥的谓项可以明显地看出。因为如果系列中ณ没有词项能ม作为ฦb系列中任何词项的谓项ำ,整个被包含在前个ฐ系列的个词项中,那ว么很明显b就不能被包含在中ณ,不然,系列就不会相互排斥了。如果b整个地被包含在另个词项ำ中,情形也同样。另方面,如果没个词项整个ฐ地被包含在另个词项中ณ,如果不属于bຘ,那ว它必然不可分割地不属于b。如果有中词,那ว么它们之中ณ必有个完全被包含在某个整体中ณ。三段论要么เ在第格中,要么在中间格中ณ出现。如果它在第格中出现,那么เ被包含在某个整体中ณ的就是b因为与b相联系的前提必定是肯定的;如果它在中间格中ณ出现,那ว么被包含在整体中的既可以是也可以是b。因为ฦ当否定陈述只跟其中个相关时,三段论存在,如果两个都是否定的,那就没有三段论。

因而很显然,个词项可以不可分割地属于另个ฐ。我们已经说明它在什么时候可能ม以及怎样才可能这些问题。

【16】不是从否定的意义而是从种肯定习๤性来考虑,无知是由于推论而产生的错误。在陈述个直接的肯定或否定的联系的命题中,它以两ä种方式出现:1当我们单纯地设定个词项属于或不属于另个时;2当我们通过三段论产生这设定时,从单纯设定产生的错误是简单的,但它基于多种形式的推论之上。让不可分割地不属于任何b。那ว么如果我们以为中ณ词,推得属于bຘ,我们的错误就是通过推论而产生的。要么两个前提都可能是假的,要么只有其中ณ个可能是假的。1如果不属于任何,不属于任何b,而我们对它们都作了相反的判定,那么,两ä个前提都是假的。这样与和b相联系是可能的,以至它既不从属于也๣不普遍地属于b。b不可能ม整个地被包含在某个整体中因为我们说过不直接属于它,不必然普遍地属于切事物,因此两个ฐ前提都是虚假的。2也可能断ษ定个真实的前๩提,当然不可能任何个都行,而只能是,前提b总是虚假的,因为bຘ不被包含在某整体中,但可以是真实的。例如,如果不可分割地既属于也属于b。如果同词项直接作为多个主项ำ的谓项,那ว么这些主项都不属于另个。如若与的联系不是不可分割的,结果并不两样。

这样,关于肯定属性的错误只是从这些原因,在这些条件中产生的我们已经知道工〕证明全称肯定联系三段论不可能在其他格中出现,但关于否定属性的错误却既可以出现在第格中,也可以出现在第二格中。让我们首先说明在第格中,它以多少形式出现,前提又是如何相联系的。

错误在下列两种情况下是可能的:1当两个前๩提都虚假时。例如,如果不可分割地既属于也属于b,因为被断定不属于任何,不属于任何b,那么两个前๩提都是虚假的。2当两个前提中有个虚假这个前提可以是任意的时。可以是真的,而可以是假的,可以是真,因为不属于切事物,b可以假,因为当不属于任何时,不能属于任何bຘ,否则,前提就不再真实了,此外,如果两个前提都是真实的,那么เ结论也๣是真实的。再者b可以真而可以假。例如,如果b既被包含在中也被包含在中,因为它们之中有个必定从属于另个,因而如果我们设定不属于任何,那么前提就是虚假的。十分明显,无຀论只有个前๩提假还是两个前提都假,三段论都是假的。

在第二格中,1两个前๩提都假是不可能的因为当属于所有b时,我们不能ม找到เ这样个词项,它属于个的全体却不属于另个ฐ的任何部分,但是我们必须以这种方式断定三段论,即,,果三段论存在,那么中ณ词从属于个端词而不从属于另个。如果这样断定的前提是虚假的,那么断定相反的前提显然会获得相反的结果。但这是不可能ม的。但是,2没有什么เ阻止两个ฐ前提可以部分虚假。例如,如果属于部分和部ຖ分b,因为如果它被设定从属于所有,不从属于所有b,那么两个ฐ前๩提都是虚假的。但不是从属于全体而是从属于部分,则ท可以成立。如果另个前提被设定是否定的,情况亦然。3单个前提可以是虚假的,属于所有的也๣属于所有b,如果被设定为属于整个但不属于整个b,就是真实的,而b则是虚假的。再者,不属于所有b的也不属于。因为如果它属于,它就属于bຘ,但根据假设它不属于b,因而如果被设定属于所有但不属于任何bຘ,那么前提b就是真的,而另个是虚假的,如果调换否定前提,情况亦相同。因为ฦ不属于任何的也不属于任何bຘ。这样,如果被设定不属于整个,但属于整个b,那么เ前提是真实的,而另个前๩提是虚假的。又,设定属于所有b的不属于任何是虚假的,如果它属于所有bຘ,它必定也属于某个,这样,如果被设定属于所有b却不属于任何,b就是真的,是假的。

因而,十分明白,当两ä个前提都假以及有个前๩提假时,在不可分的命题中ณ,错误的推论是可能的。

【17๕】在不是不可分割的属性中,无຀论它们是肯定的还是否定的,当推论通过恰当的中词产生虚假的结论时,不可能两ä个前提都假,只有大前提才可能虚假所谓“恰当的中词”即通过它可产生相矛盾结论的中词。让通过中词属于b,为了产生三段论,前提b必被设定为ฦ肯定的,很明显,它必定始终是真实的,因为它不能够转换。但却是假的,随着它的转换,三段论莽得相反的结论。设定中词要从另谓项系列中取得,情况亦同样。例如如果既完全包含在之中,又作为ฦ切b的谓项,前提b必定静止不变,而另个却可以被转换,因而b始终是真实的,而后者却总是虚假的,这类错误实际上与通过中词推得的错误相同。不过如果三段论不是通过恰当的中词而产生的,中ณ词属于却不属于任何bຘ,那么两个前๩提必定都是虚假的。如果三段论要成立,则前提必须在相反的意义上被设定。当它们这样被设定时,二者都变成虚假的。例如,如果属于整个,不属于任何b,当这些陈述发生转换时,就会有三段论存在,它的两个前提都是虚假的。但当中ณ词,例如,不属于时,前提就是真的,b是假的。是真实的,因为不包含在之中。b是虚假的,因为ฦ如果它是真实的,那么结论也๣会是真实的,然而根据假设,结论是虚假的。

当错误在第二格产生时,两个ฐ前提完全虚假是不可能的因为ฦ如我们以前๩说过的,当b从属于时,没有事物能属于者的全体而不属于另者的任何部分,但其中ณ个前提可以是虚假的,任意哪个ฐ都行。如果既属于也属于b,如果它被设定属于却不属于b,那ว么前提就是真实的,而另个是虚假的。再者,如果被设定属于b却不属于,那么เbຘ是真的,而另个是虚假的。

这样,我们就说明了如果错误的推论是否定的,那ว么什么เ时候以及从什么样的前提中错误会产生。如果它是肯定的,那么,1้当它通过恰当的中词而推得时,两个前提都假是不可能的,因为如我们在上文已说过的,如果有三段论,那么前提bຘ必定是静止不变的,因而始终是假的,因为ฦ